Facile Amido to Pyridyl Isomerization: Pentaammineruthenium(II) Walks the Nicotinamide and **Isonicotinamide Rings**

Mei H. Chou, Bruce S. Brunschwig, Carol Creutz,* and Norman Sutin

Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973

Andrew Yeh,^{†,‡} Rong Chin Chang,[‡] and Chin-Tung Lin[‡]

Departments of Chemistry, Chung Yuan Christian University, Chungli, Taiwan, Republic of China, and Tunghai University, Taichang, Taiwan, Republic of China

Received September 15, 1992

The powerfully π -donating species Os(NH₃)₅²⁺ preferentially binds η^2 to a C=C bond of the aromatic ring (A) of most functionalized aromatic rings instead of binding the functional group (B).^{1,2} Thus reduction of the B-bonded osmium(III) results in rapid intramolecular isomerization to A-bonded osmium(II). While η^2 -alkene, ³ alkyne, ³ and arene, ⁴ and η^2 -C–O acetone species have been characterized,⁵ $B \rightarrow A$ isomerization has not been encountered in the chemistry of the ruthenium congeners, the Ru-carbon bond evidently lacking the stability to drive such a rearrangement.⁴ Here we report evidence for the metastability of such species in Ru(II) chemistry: When the amido-bonded ruthenium(III) complexes of both nicotinamide and isonicotinamide are reduced, the resulting ruthenium(II) complexes, Ru^{II}-(NH₃)₅(NHC(O)-3-Py)⁺ and Ru^{il}(NH₃)₅(NHC(O)-4-Py)⁺, undergo rapid intramolecular isomerization to the pyridyl bonded forms. We believe these rearrangements proceed via A-bonded intermediates in a walk of the aromatic ring as has been found for osmium(II).

Amidoruthenium(II) complexes are unstable with respect to aquation,⁶ except at very high pH and amide concentration (for binding the neutral amide, $K \sim 10^{-3} \,\mathrm{M}^{-1}$),⁷ but can be studied as transients when the Ru(III) complexes^{8,9} are reduced rapidly (eq 1). When R is an aromatic residue, the immediate reduction

$$(NH_3)_5Ru^{III}-NHC(O)R^{2+} + e^- \rightarrow$$

 $(NH_3)_5Ru^{II}-NHC(O)R^+ (1)$

product is highly colored, with colors ranging from yellow orange (R = C₆H₅, λ_{max} 400 nm), to red orange (R = 4-C₅H₄N, λ_{max} 475 nm), to blue (R = $4-C_5H_4N-CH_3^+$, λ_{max} 695 nm) as a result of low-energy Ru(II)-to-aromatic charge transfer.⁷ For R = C_6H_5 and $R = 4-C_5H_4N-CH_3^+$, aquation results in complete bleaching of the color, with a pH-dependent rate (see Figure 1), consistent with decay of the amido complex via its conjugate acid amH (eqs 2 and 3).^{10,11} (The kinetics were monitored at λ_{max}

[†] Chung Yuan Christian University.

- [†]Tunghai University. (1) Harman, W. D.; Wishart, J. F.; Taube, H. Inorg. Chem. **1989**, 28, 2411– 2413 and references cited therein. (2) Lay, P. A.; Harman, W. D. *Adv. Inorg. Chem.* **1991**, *37*, 219–379 and
- references cited therein.
- (3) Sullivan, B. P.; Baumann, J. A.; Meyer, T. J.; Salmon, D. J.; Lehmann, H.; Ludi, A. J. Am. Chem. Soc. 1977, 99, 7368-7370. (4) Harman, W. D.; Taube, H. J. Am. Chem. Soc. 1988, 110, 7555-7557.
- (5) Powell, D. W.; Lay, P. A. Inorg. Chem. 1992, 31, 3542-3550.
 (6) Diamond, S. E.; Grant, B.; Tom, G. M.; Taube, H. Tetrahedron Lett.
- 1974, 4025-4028
- (7) Chou, M. H.; Szalda, D. H.; Creutz, C.; Sutin, N. Inorg. Chem., to be submitted for publication.
- (8) Huang, H.-Y.; Chen, W.-J.; Yang, C.-C.; Yeh, A. Inorg. Chem. 1991, 30, 1862-1868.
- Chou, M. H.; Creutz, C.; Sutin, N. Inorg. Chem. 1992, 31, 2318-2327. (10) The site of protonation, amide O or N, is not known. The pH-independent term k_{am} , which would involve direct release of the deprotonated amido ligand, is at least 3000 times smaller than k_{amH} , in contrast to the
- corresponding relative rate constants for carboxylato complexes, $11 \leq 20:1$. (11) Stritar, J. A.; Taube, H. Inorg. Chem. 1969, 8, 2281-2292.

Figure 1. pH dependence of the rate constant (k_{obs}) for aquation/ isomerization of the amidoruthenium(II) complex at 25.0 °C and 0.1 M ionic strength (LiCF₃SO₃). The curves are calculated from $k_{obs} =$ $k_{amH}(f_{amH})$ with $f_{amH} = [amH]/([am] + [amH])$ calculated from the $pK_{a,amH}$: diamonds, R = 4-PyCH₃ (k_{amH} = 6 s⁻¹, $pK_{a,amH}$ = 4.2); squares, R = 4-Py ($k_{amH} = 25 \text{ s}^{-1}$, $pK_{a,amH} = 6.2$); circles, R = 4-Ph ($k_{amH} = 34$ s^{-1} , $pK_{a,amH} = 7.7$). The reducing agent used was 5-15 mM Na₂S₂O₄, and buffers were 0.01 M acetate or phosphate.

$$(NH_3)_5Ru^{II}-(amH) \rightleftharpoons$$

 $(NH_3)_5Ru^{II}-NHC(O)R + H^+ pK_{aamH}^{II}$ (2)

$$(NH_3)_5 Ru^{II} - (amH) + H_2 O \rightarrow$$

 $Ru(NH_3)_5 (OH_2)^{2+} + RC(O)NH_2 k_{amH}$ (3)

with use of conventional syringe techniques above pH 7 and a Hi-Tech stopped-flow spectrometer at lower pH values.)

In contrast to the simple hydrolysis reactions observed above, with $R = 4-C_5H_4N$, bleaching does not occur, but rather the Ru(II) spectrum shifts to longer wavelength. The final spectrum is that of the pyridyl-bonded isonicotinamide complex¹² in up to 40% yield.

(With $R = 3-C_5H_4N$, the yield of the pyridyl-bonded isomer¹² is $53 \pm 1\%$ at pH 5.) The isomerization is also apparent in the cyclic voltammetry: In multiple scans, the current at the amido reduction peak (-300 to -500 mV vs SCE, depending on pH) drops and peaks characteristic of $(NH_3)_5RuOH_2^{3+/2+}$ and the

Ford, P.; Rudd, D. F. P.; Gaunder, R.; Taube, H. J. Am. Chem. Soc. (12)1968, 90, 1187-1194.

Figure 2. Yield of pyridyl-bonded Ru(II) complex obtained upon reduction of $(NH_3)_5Ru^{III}NHC(O)$ -4-Py with (diamonds) V_{aq}^{2+} and (circles) Na₂S₂O₄ at 25 °C and 0.1 M ionic strength (CF₃SO₃⁻) (0.01-0.1 M acetate, 0.01 M phosphate or borate buffers).

pyridyl isomer (+190 mV vs SCE) appear. The isomerization vields are independent of reducing agent (V^{II}(aq), $Ru(NH_3)_6^{2+}$, amalgamated zinc, Na₂S₂O₄) and supporting electrolyte (0.1 M Cl⁻, ClO₄⁻, CH₃CO₂⁻, or CF₃SO₃⁻ at pH 5), but Ru^{II}(NH₃)₅(Py)²⁺ forms at the expense of Ru¹¹(NH₃)₅(OH₂)²⁺ when 0.1 M pyridine is present. However, the isomerization yield does drop below pH 4, as shown in Figure 2, probably because protonation of the pyridyl nitrogen ($pK_a(Ru(II))$ ca. 3) blocks the Ru(II)-binding site.

The composite limiting rate constant for isomerization (40%) plus hydrolysis (60%) of the protonated amide complex with R = $4 - C_5 H_4 N$ is $k_{obs} = 24 \text{ s}^{-1}$ at 25 °C (Figure 1). Thus the isomerization rate constant is $0.4 \times 24 = 9.6 \text{ s}^{-1}$. The time scale for the isomerization requires that it occur via an intramolecular pathway. Since the rate constant for substitution of isonicotinamide on $Ru^{II}(NH_3)_5(OH_2)^{2+}$ is 0.1 M⁻¹ s⁻¹,¹³ formation of the more stable isomer via a bimolecular pathway could only take place over hours or longer under the conditions used (0.05-1 mM Ru(III) complex initially). Furthermore, the millisecond time scale for the process precludes its being a simple collapse of a $[Ru(NH_3)_5^{2+}|L]$ solvent cage (the lifetime of the latter is $\ll 1$ ms). The isomerization rate constant (9.6 s^{-1}) is relatively high for $Ru(II)^{14}$ and more rapid than that estimated (3.5 s⁻¹) for amide N-to-O linkage isomerization in the tetraammineruthenium(II) complex of glycylglycine¹⁵ but comparable to that found for O-to-S linkage isomerization in the DMSO complex.¹⁶ However, in contrast to the latter, here the Ru(II) migration is not to a neighboring atom, but rather to a site six bonds away. Thus the intermediacy of A-bonded isomers is inferred.

Acknowledgment. We thank Prof. Henry Taube for helpful comments. This research was carried out at Brookhaven National Laboratory under Contract DE-AC02-76CH00016 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. The support of the research at Chung Yuan Christian University by the National Science Council of the Republic of China under Grant NSC 77-0208-M033-10 is gratefully acknowledged.

- (13) Shepherd, R. E.; Taube, H. Inorg. Chem. 1973, 12, 1392-1401.
- (14) Taube, H. Comments Inorg. Chem. 1981, 1, 17-31.
 (15) Ilan, Y.; Taube, H. Inorg. Chem. 1983, 22, 1655-1664.
- (16) Yeh, A.; Scott, N.; Taube, H. Inorg. Chem. 1982, 21, 2542-2545.